If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+42z=0
a = 1; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·1·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*1}=\frac{-84}{2} =-42 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*1}=\frac{0}{2} =0 $
| 5/19=12/x | | 9−8n=6−5−7n | | 30-x=4x+15 | | u-953=-275 | | 6.2y+0.5y=6.7y | | 3x-5√x-2=0 | | 10+6m=-8-7m-8 | | 4.80(x+349)=1,000 | | –3(g−80)=–12 | | g/2=1.8 | | 61/15x-32/3x=311/5 | | 14y-8=4+14y | | 4x/8x=12-8x | | x-0.75=32 | | N^2+30n=0 | | 3x-5*(x)^(0.5)-2=0 | | 2(5)^x=128 | | 4.80x+349=1,000 | | j-3=2.62 | | 35x+46=54+31x | | 9(f−86)=72 | | 3x-5*(x)^(1/2)-2=0 | | (k/5)=-3 | | f/3+45=54 | | s+100=109 | | 5.3x=6+2.3x | | 6x+102=1,104 | | m+-392=-468 | | (6x+4)=40 | | 20x-10=720 | | 89(5x-8)(3x+4)+51=360 | | 3.4=w/3 |